Feature Fusion using Extended Jaccard Graph and Stochastic Gradient Descent for Robot
نویسندگان
چکیده
Robot vision is a fundamental device for humanrobot interaction and robot complex tasks. In this paper, we use Kinect and propose a feature graph fusion (FGF) for robot recognition. Our feature fusion utilizes RGB and depth information to construct fused feature from Kinect. FGF involves multi-Jaccard similarity to compute a robust graph and utilize word embedding method to enhance the recognition results. We also collect DUT RGB-D face dataset and a benchmark datset to evaluate the effectiveness and efficiency of our method. The experimental results illustrate FGF is robust and effective to face and object datasets in robot applications.
منابع مشابه
Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملLink Prediction via Matrix Factorization
We propose to solve the link prediction problem in graphs using a supervised matrix factorization approach. The model learns latent features from the topological structure of a (possibly directed) graph, and is shown to make better predictions than popular unsupervised scores. We show how these latent features may be combined with optional explicit features for nodes or edges, which yields bett...
متن کاملLearning to Recommend Links using Graph Structure and Node Content
The link prediction problem for graphs is a binary classification task that estimates the presence or absence of a link between two nodes in the graph. Links absent from the training set, however, cannot be directly considered as the negative examples since they might be present links at test time. Finding a hard decision boundary for link prediction is thus unnatural. This paper formalizes the...
متن کاملDiscrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...
متن کاملHyphenation with Conditional Random Field
In this project, we approach the problem of English-word hyphenation using a linear-chain conditional random field model. We measure the effectiveness of different feature combinations and two different learning methods: Collins perceptron and stochastic gradient following. We achieve the accuracy rate of 77.95% using stochastic gradient descent.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1703.08378 شماره
صفحات -
تاریخ انتشار 2017